منابع مشابه
Sketching Word Vectors Through Hashing
We propose a new fast word embedding technique using hash functions. The method is a derandomization of a new type of random projections: By disregarding the classic constraint used in designing random projections (i.e., preserving pairwise distances in a particular normed space), our solution exploits extremely sparse non-negative random projections. Our experiments show that the proposed meth...
متن کاملWord2Bits - Quantized Word Vectors
Word vectors require significant amounts of memory and storage, posing issues to resource limited devices like mobile phones and GPUs. We show that high quality quantized word vectors using 1-2 bits per parameter can be learned by introducing a quantization function into Word2Vec. We furthermore show that training with the quantization function acts as a regularizer. We train word vectors on En...
متن کاملWord Order Typology through Multilingual Word Alignment
With massively parallel corpora of hundreds or thousands of translations of the same text, it is possible to automatically perform typological studies of language structure using very large language samples. We investigate the domain of word order using multilingual word alignment and high-precision annotation transfer in a corpus with 1144 translations in 986 languages of the New Testament. Re...
متن کاملWord Vectors and Two Kinds of Similarity
This paper examines what kind of similarity between words can be represented by what kind of word vectors in the vector space model. Through two experiments, three methods for constructing word vectors, i.e., LSA-based, cooccurrence-based and dictionary-based methods, were compared in terms of the ability to represent two kinds of similarity, i.e., taxonomic similarity and associative similarit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN Computer Science
سال: 2020
ISSN: 2662-995X,2661-8907
DOI: 10.1007/s42979-020-00164-5